Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
ISME Commun ; 4(1): ycae008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38577582

RESUMO

Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-oxidizing (NDFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to elucidate the structure and metabolism of nitrate-reducing iron-oxidizing microbiomes under oligotrophic conditions mimicking natural groundwaters. The enriched community stoichiometrically removed iron and nitrate consistently with the NDFO metabolism. Genome-resolved metagenomics revealed the underlying metabolic network between the dominant iron-dependent denitrifying autotrophs and the less abundant organoheterotrophs. The most abundant genome belonged to a new Candidate order, named Siderophiliales. This new species, "Candidatus Siderophilus nitratireducens," carries genes central genes to iron oxidation (cytochrome c cyc2), carbon fixation (rbc), and for the sole periplasmic nitrate reductase (nap). Using thermodynamics, we demonstrate that iron oxidation coupled to nap based dissimilatory reduction of nitrate to nitrite is energetically favorable under realistic Fe3+/Fe2+ and NO3-/NO2- concentration ratios. Ultimately, by bridging the gap between laboratory investigations and nitrate real-world conditions, this study provides insights into the intricate interplay between nitrate and iron in groundwater ecosystems, and expands our understanding of NDFOs taxonomic diversity and ecological role.

2.
Bioresour Technol ; 396: 130423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341045

RESUMO

The accumulation of phosphorus in activated sludge in wastewater treatment plants (WWTPs) provides potential for phosphorus recovery from sewage. This study delves into the potential for releasing phosphorus from waste activated sludge through two distinct treatment methods-thermal hydrolysis and pH adjustment. The investigation was conducted with activated sludge sourced from four WWTPs, each employing distinct phosphorus removal strategies. The findings underscore the notably superior efficacy of pH adjustment in solubilizing sludge phosphorus compared to the prevailing practice of thermal hydrolysis, widely adopted to enhance sludge digestion. The reversibility of phosphorus release within pH fluctuations spanning 2 to 12 implies that the release of sludge phosphorus can be attributed to the dissolution of phosphate precipitates. Alkaline sludge treatment induced the concurrent liberation of COD, nitrogen, and phosphorus through alkaline hydrolysis of sludge biomass and the dissolution of iron or aluminium phosphates, offering potential gains in resource recovery and energy efficiency.


Assuntos
Águas Residuárias , Purificação da Água , Esgotos , Fósforo , Nitrogênio , Carbono , Eliminação de Resíduos Líquidos
3.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334520

RESUMO

This study investigates the development of polyvinyl alcohol (PVA) gel matrices for biomass immobilization in wastewater treatment. The PVA hydrogels were prepared through a freezing-thawing (F-T) cross-linking process and reinforced with high surface area nanoparticles to improve their mechanical stability and porosity. The PVA/nanocomposite hydrogels were prepared using two different nanoparticle materials: iron oxide (Fe3O2) and titanium oxide (TiO2). The effects of the metal oxide nanoparticle type and content on the pore structure, hydrogel bonding, and mechanical and viscoelastic properties of the cross-linked hydrogel composites were investigated. The most durable PVA/nanoparticles matrix was then tested in the bioreactor for the biological treatment of wastewater. Morphological analysis showed that the reinforcement of PVA gel with Fe2O3 and TiO2 nanoparticles resulted in a compact nanocomposite hydrogel with regular pore distribution. The FTIR analysis highlighted the formation of bonds between nanoparticles and hydrogel, which caused more interaction within the polymeric matrix. Furthermore, the mechanical strength and Young's modulus of the hydrogel composites were found to depend on the type and content of the nanoparticles. The most remarkable improvement in the mechanical strength of the PVA/nanoparticles composites was obtained by incorporating 0.1 wt% TiO2 and 1.0 wt% Fe2O3 nanoparticles. However, TiO2 showed more influence on the mechanical strength, with more than 900% improvement in Young's modulus for TiO2-reinforced PVA hydrogel. Furthermore, incorporating TiO2 nanoparticles enhanced hydrogel stability but did not affect the biodegradation of organic pollutants in wastewater. These results suggest that the PVA-TiO2 hydrogel has the potential to be used as an effective carrier for biomass immobilization and wastewater treatment.

4.
Environ Sci Ecotechnol ; 21: 100387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38322240

RESUMO

Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.

6.
Water Res ; 252: 121240, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330717

RESUMO

Glycans are crucial for the structure and function of anaerobic granular sludge in wastewater treatment. Yet, there is limited knowledge regarding the microorganisms and biosynthesis pathways responsible for glycan production. In this study, we analysed samples from anaerobic granular sludges treating papermill and brewery wastewater, examining glycans composition and using metagenome-assembled genomes (MAGs) to explore potential biochemical pathways associated with their production. Uronic acids were the predominant constituents of the glycans in extracellular polymeric substances (EPS) produced by the anaerobic granular sludges, comprising up to 60 % of the total polysaccharide content. MAGs affiliated with Anaerolineacae, Methanobacteriaceae and Methanosaetaceae represented the majority of the microbial community (30-50 % of total reads per MAG). Based on the analysis of MAGs, it appears that Anaerolinea sp. and members of the Methanobacteria class are involved in the production of exopolysaccharides within the analysed granular sludges. These findings shed light on the functional roles of microorganisms in glycan production in industrial anaerobic wastewater treatment systems.


Assuntos
Metagenoma , Esgotos , Esgotos/química , Anaerobiose , Águas Residuárias , Polissacarídeos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos
7.
ACS ES T Water ; 4(1): 279-286, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229592

RESUMO

Bacteria can synthesize a diverse array of glycans, being found attached to proteins and lipids or as loosely associated polysaccharides to the cells. The major challenge in glycan analysis in environmental samples lies in developing high-throughput and comprehensive characterization methodologies to elucidate the structure and monitor the change of the glycan profile, especially in protein glycosylation. To this end, in the current research, the dynamic change of the glycan profile of a few extracellular polymeric substance (EPS) samples was investigated by high-throughput lectin microarray and mass spectrometry, as well as sialylation and sulfation analysis. Those EPS were extracted from aerobic granular sludge collected at different stages during its adaptation to the seawater condition. It was found that there were glycoproteins in all of the EPS samples. In response to the exposure to seawater, the amount of glycoproteins and their glycan diversity displayed an increase during adaptation, followed by a decrease once the granules reached a stable state of adaptation. Information generated sheds light on the approaches to identify and monitor the diversity and dynamic alteration of the glycan profile of the EPS in response to environmental stimuli.

8.
Appl Microbiol Biotechnol ; 108(1): 144, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231410

RESUMO

Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Fator 2 de Crescimento de Fibroblastos , Animais , Histonas , Esgotos , Heparina , Polímeros , Água do Mar , Sulfatos , Glicoconjugados
9.
Water Res ; 250: 121028, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128304

RESUMO

With the rapid growing availability of metagenome assembled genomes (MAGs) and associated metabolic models, the identification of metabolic potential in individual community members has become possible. However, the field still lacks an unbiassed systematic evaluation of the generated metagenomic information to uncover not only metabolic potential, but also feasibilities of these models under specific environmental conditions. In this study, we present a systematic analysis of the metabolic potential in species of "Candidatus Accumulibacter", a group of polyphosphate-accumulating organisms (PAOs). We constructed a metabolic model of the central carbon metabolism and compared the metabolic potential among available MAGs for "Ca. Accumulibacter" species. By combining Elementary Flux Modes Analysis (EFMA) with max-min driving force (MDF) optimization, we obtained all possible flux distributions of the metabolic network and calculated their individual thermodynamic feasibility. Our findings reveal significant variations in the metabolic potential among "Ca. Accumulibacter" MAGs, particularly in the presence of anaplerotic reactions. EFMA revealed 700 unique flux distributions in the complete metabolic model that enable the anaerobic uptake of acetate and its conversion into polyhydroxyalkanoates (PHAs), a well-known phenotype of "Ca. Accumulibacter". However, thermodynamic constraints narrowed down this solution space to 146 models that were stoichiometrically and thermodynamically feasible (MDF > 0 kJ/mol), of which only 8 were strongly feasible (MDF > 7 kJ/mol). Notably, several novel flux distributions for the metabolic model were identified, suggesting putative, yet unreported, functions within the PAO communities. Overall, this work provides valuable insights into the metabolic variability among "Ca. Accumulibacter" species and redefines the anaerobic metabolic potential in the context of phosphate removal. More generally, the integrated workflow presented in this paper can be applied to any metabolic model obtained from a MAG generated from microbial communities to objectively narrow the expected phenotypes from community members.


Assuntos
Betaproteobacteria , Metagenoma , Anaerobiose , Fósforo/metabolismo , Betaproteobacteria/metabolismo , Redes e Vias Metabólicas , Reatores Biológicos
10.
Sci Total Environ ; 912: 169213, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097066

RESUMO

A dual-growth-limited continuous operated bioreactor (chemostat) was used to enhance lipid accumulation in an enrichment culture of microalgae. The light intensity and nitrogen concentration where both limiting factors resulting in high lipid accumulation in the mixed culture. Both conditions of light and nitrogen excess and deficiency were tested. Strategies to selectively enrich for a phototrophic lipid-storing community, based on the use of different nitrogen sources (ammonium vs. nitrate) and vitamin B supplementation in the growth medium, were evaluated. The dual limitation of both nitrogen and light enhanced the accumulation of storage compounds. Ammoniacal nitrogen was the preferred nitrogen source. Vitamin B supplementation led to a doubling of the lipid productivity. The availability of vitamins played a key role in selecting an efficient lipid-storing community, primarily consisting of Trebouxiophyceae (with an 82 % relative abundance among eukaryotic microorganisms). The obtained lipid volumetric productivity (387 mg L-1 d-1) was among the highest reported in literature for microalgae bioreactors. Lipid production by the microalgae enrichment surpassed the efficiencies reported for continuous microalgae pure cultures, highlighting the benefits of mixed-culture photo-biotechnologies for fuels and food ingredients in the circular economy.


Assuntos
Microalgas , Reatores Biológicos , Nitrogênio , Lipídeos , Vitaminas , Biomassa
11.
Water Res ; 247: 120776, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898002

RESUMO

Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly­hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.


Assuntos
Glucose , Esgotos , Reatores Biológicos , Polifosfatos/metabolismo , Fósforo/metabolismo , Lactatos
12.
Water Res ; 246: 120700, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866247

RESUMO

The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.


Assuntos
Microbiota , Esgotos , Esgotos/química , RNA Ribossômico 16S/genética , Reatores Biológicos , Metagenoma , Metagenômica/métodos
13.
Synth Syst Biotechnol ; 8(4): 629-639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823039

RESUMO

Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilibrium. While stoichiometric analyses and genetic modifications are frequently employed in metabolic engineering, the use of thermodynamic tools to evaluate the feasibility of planned interventions is less documented. In this study, we propose a novel metabolic engineering strategy to achieve an efficient anaerobic production of poly-(R)-3-hydroxybutyrate (PHB) in the model organism Escherichia coli. Our approach involves re-routing of two-thirds of the glycolytic flux through non-oxidative glycolysis and coupling PHB synthesis with NADH re-oxidation. We complemented our stoichiometric analysis with various thermodynamic approaches to assess the feasibility and the bottlenecks in the proposed engineered pathway. According to our calculations, the main thermodynamic bottleneck are the reactions catalyzed by the acetoacetyl-CoA ß-ketothiolase (EC 2.3.1.9) and the acetoacetyl-CoA reductase (EC 1.1.1.36). Furthermore, we calculated thermodynamically consistent sets of kinetic parameters to determine the enzyme amounts required for sustaining the conversion fluxes. In the case of the engineered conversion route, the protein pool necessary to sustain the desired fluxes could account for 20% of the whole cell dry weight.

14.
J Hazard Mater ; 460: 132232, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690201

RESUMO

We investigated the transformation of four pharmaceuticals (Diclofenac, Naproxen, Ibuprofen and Carbamazepine) in a moving bed biofilm reactor subjected to different COD/N ratios in four experimental phases. The shift from medium to high range COD/N ratio (i.e., 5:1 to 100:1) intensified the competition between heterotrophs and nitrifying communities, leading to a transition from co-existence of heterotrophic and autotrophic conditions with high COD removal and nitrification rate in phase I to dominant heterotrophic conditions in phase II. At lower range COD/N ratios (i.e., 1:2 and 1:8) in phase III and IV, autotrophic conditions prevailed, resulting in increased nitrification rates and high abundance of amoA gene in the biofilm. Such shifts in the operating condition were accompanied by notable changes in the biofilm concentrations, composition and abundance of microbial populations as well as biodiversity in the biofilms, which collectively affected the degradation rates of the pharmaceuticals. We observed higher kinetic rates per unit of biofilm concentration under autotrophic conditions compared to heterotrophic conditions for all compounds except Naproxen, indicating the importance of nitrification in the transformation of such compounds. The results also revealed a positive relationship between biodiversity and biomass-normalized kinetic rates of most compounds.


Assuntos
Biodiversidade , Naproxeno , Biotransformação , Biofilmes , Preparações Farmacêuticas
15.
Environ Sci Technol ; 57(35): 13217-13225, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37604486

RESUMO

Anaerobic and aerobic granular sludge processes are widely applied in wastewater treatment. In these systems, microorganisms grow in dense aggregates due to the production of extracellular polymeric substances (EPS). This study investigates the sialylation and sulfation of anionic glyconconjugates in anaerobic and aerobic granular sludges collected from full-scale wastewater treatment processes. Size exclusion chromatography revealed a wide molecular weight distribution (3.5 to >5500 kDa) of the alkaline-extracted EPS. The high-molecular weight fraction (>5500 kDa), comprising 16.9-27.4% of EPS, was dominant with glycoconjugates. Mass spectrometry analysis and quantification assays identified nonulosonic acids (NulOs, e.g., bacterial sialic acids) and sulfated groups contributing to the negative charge in all EPS fractions. NulOs were predominantly present in the high-molecular weight fraction (47.2-84.3% of all detected NulOs), while sulfated glycoconjugates were distributed across the molecular weight fractions. Microorganisms, closely related to genera found in the granular sludge communities, contained genes responsible for NulO and sulfate group synthesis or transfer. The similar distribution patterns of sialylation and sulfation of the anionic glycoconjugates in the EPS samples indicate that these two glycoconjugate modifications commonly occur in the EPS of aerobic and anaerobic granular sludges.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Peso Molecular , Glicoconjugados , Sulfatos , Óxidos de Enxofre
16.
Front Microbiol ; 14: 1228266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577439

RESUMO

Proteomics has greatly advanced the understanding of the cellular biochemistry of microorganisms. The thermoalkaliphile Caldalkalibacillus thermarum TA2.A1 is an organism of interest for studies into how alkaliphiles adapt to their extreme lifestyles, as it can grow from pH 7.5 to pH 11. Within most classes of microbes, the membrane-bound electron transport chain (ETC) enables a great degree of adaptability and is a key part of metabolic adaptation. Knowing what membrane proteins are generally expressed is crucial as a benchmark for further studies. Unfortunately, membrane proteins are the category of proteins hardest to detect using conventional cellular proteomics protocols. In part, this is due to the hydrophobicity of membrane proteins as well as their general lower absolute abundance, which hinders detection. Here, we performed a combination of whole cell lysate proteomics and proteomics of membrane extracts solubilised with either SDS or FOS-choline-12 at various temperatures. The combined methods led to the detection of 158 membrane proteins containing at least a single transmembrane helix (TMH). Within this data set we revealed a full oxidative phosphorylation pathway as well as an alternative NADH dehydrogenase type II (Ndh-2) and a microaerophilic cytochrome oxidase ba3. We also observed C. thermarum TA2.A1 expressing transporters for ectoine and glycine betaine, compounds that are known osmolytes that may assist in maintaining a near neutral internal pH when the external pH is highly alkaline.

17.
Environ Res ; 235: 116597, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442255

RESUMO

Digestate is a rich source of nutrients that can be applied in agricultural fields as fertilizer or irrigation water. However, most of the research about application of digestate have focused on its agronomic properties and neglected the potential harm of the presence of contaminants of emerging concern (CECs). Aadvanced oxidation processes (AOPs) have proved to be effective for removing these compounds from drinking water, yet there are some constrains to treat wastewater and digestate mainly due to their complex matrix. In this study, the feasibility to remove different CECs from digestate using O3 and O3/H2O2 was assessed, and the general effect of the matrix in the oxidation was explained. While the lab-scale ozonation provided an ozone dose of 1.49 mg O3/mg DOC in 5 h treatment, almost all the compounds were removed at a lower ozone dose of maximum 0.48 mg O3/mg DOC; only ibuprofen required a higher dose of 1.1 mg O3/mg DOC to be oxidized. The digestate matrix slowed down the kinetic ozonation rate to approximately 1% compared to the removal rate in demineralized water. The combined treatment (O3/H2O2) showed the additional contribution of H2O2 by decreasing the ozone demand by 59-75% for all the compounds. The acute toxicity of the digestate, measured by the inhibition of Vibrio fisheries luminescence, decreased by 18.1% during 5 h ozonation, and by 34% during 5 h O3/H2O2 treatment. Despite the high ozone consumption, the ozone dose (mg O3/mg DOC) required to remove all CECs from digestate supernatant was in the range or lower than what has been reported for other (waste-)water matrix, implying that ozonation can be considered as a post-AD treatment to produce cleaner stream for agricultural purposes.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Esgotos , Peróxido de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Águas Residuárias , Água , Oxirredução
18.
ISME J ; 17(10): 1639-1648, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37443340

RESUMO

Dissimilatory nitrate reduction to ammonia (DNRA) is a common biochemical process in the nitrogen cycle in natural and man-made habitats, but its significance in wastewater treatment plants is not well understood. Several ammonifying Trichlorobacter strains (former Geobacter) were previously enriched from activated sludge in nitrate-limited chemostats with acetate as electron (e) donor, demonstrating their presence in these systems. Here, we isolated and characterized the new species Trichlorobacter ammonificans strain G1 using a combination of low redox potential and copper-depleted conditions. This allowed purification of this DNRA organism from competing denitrifiers. T. ammonificans is an extremely specialized ammonifier, actively growing only with acetate as e-donor and carbon source and nitrate as e-acceptor, but H2 can be used as an additional e-donor. The genome of G1 does not encode the classical ammonifying modules NrfAH/NrfABCD. Instead, we identified a locus encoding a periplasmic nitrate reductase immediately followed by an octaheme cytochrome c that is conserved in many Geobacteraceae species. We purified this octaheme cytochrome c protein (TaNiR), which is a highly active dissimilatory ammonifying nitrite reductase loosely associated with the cytoplasmic membrane. It presumably interacts with two ferredoxin subunits (NapGH) that donate electrons from the menaquinol pool to the periplasmic nitrate reductase (NapAB) and TaNiR. Thus, the Nap-TaNiR complex represents a novel type of highly functional DNRA module. Our results indicate that DNRA catalyzed by octaheme nitrite reductases is a metabolic feature of many Geobacteraceae, representing important community members in various anaerobic systems, such as rice paddy soil and wastewater treatment facilities.


Assuntos
Amônia , Nitratos , Humanos , Nitratos/metabolismo , Oxirredução , Citocromos c/metabolismo , Nitrato Redutases/química , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Desnitrificação
19.
Nat Commun ; 14(1): 4548, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507407

RESUMO

Although the coronavirus disease (COVID-19) emergency status is easing, the COVID-19 pandemic continues to affect healthcare systems globally. It is crucial to have a reliable and population-wide prediction tool for estimating COVID-19-induced hospital admissions. We evaluated the feasibility of using wastewater-based epidemiology (WBE) to predict COVID-19-induced weekly new hospitalizations in 159 counties across 45 states in the United States of America (USA), covering a population of nearly 100 million. Using county-level weekly wastewater surveillance data (over 20 months), WBE-based models were established through the random forest algorithm. WBE-based models accurately predicted the county-level weekly new admissions, allowing a preparation window of 1-4 weeks. In real applications, periodically updated WBE-based models showed good accuracy and transferability, with mean absolute error within 4-6 patients/100k population for upcoming weekly new hospitalization numbers. Our study demonstrated the potential of using WBE as an effective method to provide early warnings for healthcare systems.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , Pandemias , Águas Residuárias , COVID-19/epidemiologia , Hospitalização , Hospitais
20.
Environ Sci Technol ; 57(30): 11108-11121, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37474498

RESUMO

Polyhydroxyalkanoates (PHAs) can be produced with municipal waste activated sludge from biological wastewater treatment processes. Methods of selective fluorescent staining with confocal laser scanning microscopy (CLSM) were developed and optimized to evaluate the distribution of PHA storage activity in this mixed culture activated sludge microbial communities. Selective staining methods were applied to a municipal activated sludge during pilot scale PHA accumulation in replicate experiments. Visualization of stained flocs revealed that a significant but limited fraction of the biomass was engaged with PHA accumulation. Accumulated PHA granules were furthermore heterogeneously distributed within and between flocs. These observations suggested that the PHA content for the bacteria storing PHAs was significantly higher than the average PHA content measured for the biomass as a whole. Optimized staining methods provided high acuity for imaging of PHA distribution when compared to other methods reported in the literature. Selective staining methods were sufficient to resolve and distinguish between distinctly different morphotypes in the biomass, and these observations of distinctions have interpreted implications for PHA recovery methods. Visualization tools facilitate meaningful insights for advancements of activated sludge processes where systematic observations, as applied in the present work, can reveal underlying details of structure-function relationships.


Assuntos
Poli-Hidroxialcanoatos , Purificação da Água , Esgotos/microbiologia , Biomassa , Bactérias , Reatores Biológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...